Oracle anuncia la plataforma Cloud Data Science

 

Oracle anunció la disponibilidad de Cloud Data Science Platform, la cual ayuda a las empresas a construir, capacitar, administrar e implementar en colaboración modelos de aprendizaje autónomo para aumentar el éxito de los proyectos de ciencia de datos. A diferencia de otros productos que se enfocan en científicos de datos individuales, Cloud Infrastructure Data Science ayuda a mejorar la efectividad gracias a capacidades como proyectos compartidos, catálogos de modelos, políticas de seguridad de equipo, reproducibilidad y auditabilidad. Esta solución, selecciona automáticamente los conjuntos de datos de entrenamiento óptimos a través de la selección y el ajuste del algoritmo AutoML, la evaluación y la explicación del modelo.

 

Hoy en día, las organizaciones solo se dan cuenta de una fracción del enorme potencial de transformación de los datos porque los equipos no tienen fácil acceso a los mismos ni a las herramientas adecuadas para construir e implementar modelos efectivos de aprendizaje autónomo. El resultado es que los modelos tardan demasiado en desarrollarse, no siempre cumplen con los requisitos empresariales de precisión y robustez y con demasiada frecuencia nunca llegan a producción.

 

Los modelos efectivos de aprendizaje autónomo son la base de proyectos exitosos de ciencia de datos, pero el volumen y la variedad de datos que enfrentan las empresas pueden detener estas iniciativas antes de que despeguen“, dijo Greg Pavlik, Vicepresidente Senior de Desarrollo de Productos, Data e IA. Servicios. “Con Cloud Infrastructure Data Science, estamos mejorando la productividad de los científicos de datos individuales al automatizar todo su flujo de trabajo y agregando un fuerte apoyo de equipo para ayudar a garantizar que estos proyectos de entreguen un valor real a las empresas”.

 

Diseñado para equipos de ciencia de datos y científicos.

 

Cloud Infrastructure Data Science incluye flujo de trabajo automatizado de ciencia de datos, ahorrando tiempo y reduciendo errores con las siguientes capacidades:

 

  • La selección y el ajuste automático de algoritmos de AutoML automatizan el proceso de ejecutar pruebas contra múltiples algoritmos y configuraciones de hiperparámetros. Comprueba la precisión de los resultados y confirma que se selecciona el modelo y la configuración óptimos para su uso. Esto ahorra un tiempo significativo para los científicos de datos y, lo que es más importante, está diseñado para permitir que cada científico de datos obtenga los mismos resultados que los profesionales más experimentados.
  • La selección automática de características predictivas simplifica la ingeniería de características al identificar automáticamente las características predictivas clave de conjuntos de datos más grandes.
  • La evaluación del modelo genera un conjunto integral de métricas de evaluación y visualizaciones adecuadas para medir el rendimiento del modelo frente a nuevos datos y puede clasificar los modelos a lo largo del tiempo para permitir un comportamiento óptimo en la producción. La evaluación del modelo va más allá del rendimiento bruto para tener en cuenta el comportamiento de referencia esperado y utiliza un modelo de costos para que los diferentes impactos de falsos positivos y falsos negativos se puedan incorporar por completo.
  • Explicación del modelo: Cloud Infrastructure Data Science proporciona una explicación automatizada de la ponderación relativa y la importancia de los factores que intervienen en la generación de una predicción. Cloud Infrastructure Data Science ofrece la primera implementación comercial de la explicación independiente del modelo. Con un modelo de detección de fraude, por ejemplo, un científico de datos puede explicar qué factores son los principales impulsores del fraude para que la empresa pueda modificar procesos o implementar salvaguardas.

 

Obtener modelos efectivos de aprendizaje autónomo con éxito en la producción necesita más que solo personas dedicadas. Requiere equipos de científicos de datos que trabajen juntos en colaboración. Cloud Infrastructure Data Science ofrece potentes capacidades de equipo que incluyen:

 

  • Los proyectos compartidos ayudan a los usuarios a organizar, habilitar el control de versiones y compartir de manera confiable el trabajo de un equipo, incluidas las sesiones de datos y portátiles.
  • Los catálogos de modelos permiten a los miembros del equipo compartir de manera confiable modelos ya construidos y los artefactos necesarios para modificarlos y desplegarlos.
  • Las políticas de seguridad basadas en equipos permiten a los usuarios controlar el acceso a modelos, códigos y datos, que están completamente integrados con Oracle Cloud Infrastructure Identity and Access Management.
  • Las funcionalidades de reproducibilidad y auditabilidad permiten a la empresa realizar un seguimiento de todos los activos relevantes, de modo que todos los modelos se puedan reproducir y auditar, incluso si los miembros del equipo se van.

 

Con Cloud Infrastructure Data Science, las organizaciones pueden acelerar la implementación exitosa del modelo y producir resultados y desempeño de nivel empresarial para el análisis predictivo para generar resultados comerciales positivos.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

PHP Code Snippets Powered By : XYZScripts.com